Ta Buffer Layer Effect on the Growth of Fe₃O₄ Thin Films Prepared by RF-sputtering

Jihyeon Gook, Nyun Jong Lee, Yu Jeong Bae, and Tae Hee Kim*

Department of Physics, Ewha Womans University, Seoul 120-750, Korea

(Received 6 February 2015, Received in final form 14 April 2015, Accepted 14 April 2015)

Si(100)\200 nm SiO₂\5 nm Ta\5 nm MgO\35 nm Fe₃O₄ multi-layers were prepared by using RF-sputtering and ultra-high vacuum molecular beam epitaxy (UHV-MBE) techniques. After post-annealing the multi-layers at 500 °C for 1 hour under the high vacuum of $\sim 1 \times 10^{-6}$ Torr, we observed ferromagnetic properties at room temperature as well as the Verwey transition which is the typical features of magnetite crystals formed. We have carried out a comparative study of the effect of Ta buffered layer on the crystallinity and magnetic properties of Fe₃O₄ thin films prepared under different growth and annealing conditions.

Key words : Fe₃O₄ thin film, RF-sputtering, Ta buffer layer

RF-스퍼터링 기법으로 제작한 Fe₃O₄ 박막에 Ta 기저층이 미치는 효과

국지현 · 이년종 · 배유정 · 김태희*

이화여자대학교 물리학과, 서울시 서대문구 이화여대길 52, 120-750

(2015년 2월 6일 받음, 2015년 4월 14일 최종수정본 받음, 2015년 4월 14일 게재확정)

SiO₂ 산화막이 제거되지 않은 Si(100) 기판 위에 실온에서 5 nm Ta과 5 nm MgO 기저층을 증착하고, 그 위에 RF 스퍼터링 기법으로 실온에서 약 35 nm 두께의 Fe₃O₄ 박막을 적충하였다. 진공 후열처리에 따라 향상된 Fe₃O₄ 박막의 결정성과 그에 따른 자기적 특성의 변화 양상을 관찰하였다. 500 °C에서 1시간 동안 후열처리한 시료에 대해, 실온에서 강자성 특성을 보았을 뿐만 아니라, Fe₃O₄ 박막의 고유한 특성으로 알려진 Verwey 상전이 현상 또한 관찰되었다. 후열처리에 의해 MgO 박막 위에 적충된 Fe₃O₄에 미치는 Ta 기저층의 영향에 대해 Ta이 삽입되지 않은 경우와 비교하여 논의 할 것이다.

주제어 : Fe₃O₄ 박막, RF 스퍼터링, Ta 기저층

I.서 론

마그네타이트 Fe₃O₄는 높은 자기모멘트와 함께 큐리온도 또한 높아 비휘발성 자기기록소자 등 스핀트로닉스 소자로의 우수한 활용뿐만 아니라 인체에도 무해하여 바이오 소자로 폭 넓은 산업적 응용성을 제공하므로 높은 관심을 받고 있는 물질이다. 마그네타이트(Magnetite, Fe₃O₄)는 헤마타이트 (Hematite, α-Fe₂O₃), 마그헤마타이트(Maghemite, γ-Fe₂O₃), 뷔스타이트(Wustite, FeO) 등과 같은 산화철의 일종으로 마그 네타이트의 화학식은 Fe³⁺[Fe²⁺Fe³⁺]O₄이며, 문헌적으로 858 K 의 높은 큐리온도를 갖는 안정한 물질로 익히 알려져 있다. 벌크(Bulk)의 경우 4 K에서 98 emu/g의 높은 자기모멘트를 보이며, 단결정 마그네타이트의 경우 비저항은 300 K에서 약 2×10⁻²Ω·cm 정도로 낮은 금속성을 보이지만 120 K 근처 의 온도에서 단결정 마그네타이트는 급격하게 저항이 증가하 는, 일명 Verwey 상전이라 일컬어지는 금속-절연체 상전이 현상을 보인다[1-6]. 이러한 마그네타이트에서 발현되는 Verwey 상전이 현상은 기초물리적 측면에서 중요하게 취급되 어 최근까지도 꾸준한 관심을 받는 연구주제 중 하나이다. Fe₃O₄의 물성 연구는 초정밀 초고집적형 미래첨단소자를 구 현하기 위해 벌크 상태에서 나타나는 물질 고유의 특성과 차 별화된 저차원 나노구조에서 발현되는 특성에 대한 연구로 확 장되고 있다. 저차원 나노구조에서 부피대비 큰 표면적 비율 은 초상자성 자기저항 등 벌크에서는 볼 수 없던 다양한 새 로운 물성의 발현과 그 제어에 중요한 단초를 제공한다. 다 양한 제작기법으로 제작된 서브.마이크론 두께의 Fe₃O₄ 박막 의 전자기적 특성과 관련된 선행 연구들은 산화와 환원이 쉽

[©] The Korean Magnetics Society. All rights reserved. *Corresponding author: Tel: +82-2-3277-4255, Fax: +82-2-3277-2372, e-mail: taehee@ewha.ac.kr

게 일어나는 Fe의 특성으로 인해 역스피넬구조를 갖는 Fe₃O₄ 단일상 형성의 어려움과 계면에서 대칭성 깨짐에 의해 변질 될 수 있는 준금속성 개선에 관한 결과들을 보고하고 있다. 실제적으로 아직까지 나노크기 수준의 물성의 균일성, 안정성, 재현성 등을 고려한 Fe₃O₄ 박막의 제조 및 특성 제어는 미완 의 연구주제로 연구자들의 초미의 관심의 대상이 되고 있다.

본 연구에서는 수직 다층박막의 적층계면효과를 이용하여 이러한 Fe₃O₄ 박막 제작에 새로운 방법을 제시하고자 한다. SiO₂ 산화막이 제거되지 않은 Si(100) 기판 위에 나노스케일 의 Ta, MgO, Fe₃O₄를 실온(300 K)에서 연속적으로 증착한 뒤, 1시간 정도의 진공 후열처리 과정을 통해 산화물 MgO와 Fe₃O₄ 박막에 유도되는 결정성과 그에 따른 자기적 특성의 변화를 탐구하였다. 최근 스퍼터링 기법으로 제작된 Fe/MgO/ Fe과 CoFeB/MgO/CoFeB 터널접합구조에서 후열처리 과정에 서 발생되는 Ta 기저층의 상전이에 의해 준 정합구조의 형성 에 대한 연구는 나노스케일에서 발현되는 적층계면특성의 중 요성에 대해 시사하는 바가 크다[7, 8]. 이 원리를 Fe₃O₄ 박 막에 적용하여 기존의 Fe₃O₄ 박막제조에서 요구되던 고온 열 처리과정 없이 Fe₃O₄ 고유 물성의 재현 가능성을 모색해 보 고자 한다.

II. 실험방법

Si(100)\200 nm SiO₂\5 nm Ta\5 nm MgO\35 nm Fe₃O₄ 다층 박막을 RF-스퍼터링과 초고진공 분자빔 증착 기법으로 실온에서 제작하였다. 초고진공 박막 증착 장비의 기본 진공 도는 2×10⁻¹⁰ Torr 이하로 유지되었으며, 스퍼터링 동안 약 40 sccm으로 Ar 기체가 유입되었고 200 W의 전력이 인가되 었다. 1×10⁻⁶ Torr에 이르는 진공 하에서 1시간 동안 300, 400, 500 °C에서 후열처리가 진행되었다. 각각의 시료에 대한 상세한 내용은 [Table I]에 정리하였다. Ta 기저층의 효과를 검증하기 위해 화학적 에칭으로 산화층이 제거된 Si(100) 위 에 초고진공 분자빔증착 기법으로 에피성장된 MgO(001) 위에 RF 스퍼터링 기법으로 35 nm 두께의 Fe₃O₄ 박막을 실온에서 적층하였다(Sample 1). Si(100) 기판 위에 에피 MgO(100) 증착 조건에 대한 자세한 내용은 본 그룹이 앞서 발표한 다

Table I. Sample description and post-annealing temperature.

Name	Description	Post-annealing
Sample 1	Si(100)\5 nm MgO(100)\ Fe ₃ O ₄	Sample 1a: 300 °C for 1 hr Sample 1b: 400 °C for 1 hr Sample 1c: 500 °C for 1 hr
Sample 2	Si(100)\200 nm SiO ₂ \ 5 nm Ta\5 nm MgO\ 35 nm Fe ₃ O ₄	Sample 2a: 300 °C for 1 hr Sample 2b: 400 °C for 1 hr Sample 2c: 500 °C for 1 hr

른 연구논문에서 다루었기에 본 논문에서는 생략한다[9, 10]. 이들 시료는 앞서 소개된 Ta이 삽입된 시료들과 마찬가지로 동일한 후열처리를 거쳐 그 구조적, 자기적 특성을 X선 회절 분석법(X-Ray Diffractometer, XRD)과 진동자력계(Vibrating Sample Magnetometer, VSM) 등을 이용하여 연구하였다. 또 한, 4극-탐침기법(4-Point Probe Technique)을 이용하여 Fe₃O₄ 박막의 전기적 특성을 연구하였다. 화학량론(Stoichiometry)에 의한 Fe₃O₄ 박막에서 나타나는 Verwey 상전이는 Fe₃O₄ 박 막 제작조건과 후열처리의 적합성을 판별하는 중요한 단초를 제공할 것이다. 모든 박막의 두께는 표면 프로파일러, Veeco DEKTAK 150을 이용하여 측정하였으며, 선택된 일부 시료에 한해 원자 힘 현미경(Atomic Force Microscopy, AFM)으로 표면구조 분석을 진행하였다.

III. 결과 및 논의

Fig. 1(a)와 (b)는 Sample 1과 2의 후열처리 전후의 XRD 구조분석결과를 보여준다. 500 °C에서 열처리 후 MgO(200) 에 해당하는 피크와 함께 Fe₃O₄(311)에 해당하는 피크가 관 찰되었다. 300과 400 °C에서는 오로지 MgO(200)에 해당하는 피크만이 그 세기가 미약하나마 관찰되었다. 단, 화학적 에칭 처리가 된 Si(100) 기판 위에 250 °C 기판온도에서 적층된 MgO(100)의 경우(Sample 1) 후열처리 이후 상대적으로 우세 한 결정성이 관찰되었으나, 주목할 만한 것은 상대적으로 우 수한 MgO 결정성이 Fe₃O₄의 결정성을 유도하지 못했다는 것이다. Sample 1과 2의 경우 모두 500 °C의 후열처리 과정 을 거쳐 [311] 방향으로 성장된 매우 작은 결정립들의 조합 으로 구성된 다결정 Fe₃O₄가 형성되었다. 본 연구에서는 MgO와 Ta 기저층의 특성을 고려하여 열처리는 500 °C를 넘

Fig. 1. (Color online) XRD results before and after post-annealing (a) Sample 1 and (b) Sample 2 (black: As grown, red: 300 °C, green: 400 °C, blue: 500 °C post annealed samples).

Fig. 2. (Color online) AFM images for (a) Sample 1c and (b) Sample 2c, which are post-annealed at 500 °C for 1 hour ((a) RMS roughness: 5.34 nm, Peak to Peak: 69.54 nm, (b) RMS roughness: 2.04 nm, Peak to Peak: 29.54 nm).

지 않도록 제한하였다.

Fig. 2(a)와 (b)는 Sample 1c와 Sample 2c의 AFM 이미 지에 해당한다. Ta 기저층이 삽입된 경우(Fig. 2(b)) 상대적으 로 작고 고른 크기의 Fe₃O₄ 알갱이들이 형성되었고 Si(100)\ MgO(100) 위에 성장된 Fe₃O₄ 경우는 500 ℃ 열처리 이후 약 100~200 nm 직경의 클러스터(cluster) 형성으로 매우 거친 표면이 형성되었음을 보여준다.

제작된 모든 시료에 대해 VSM을 이용하여 자기적 특성을

Fig. 3. (Color online) M-H curves before and after post-annealing (a) Sample 1 and (b) Sample 2.

Fig. 4. (Color online) Resistivity of Sample 1c (black) and Sample 2c (red) with respect to temperature.

분석하였다. 후열처리 온도가 증가됨에 따라 강자성 특성이 점차 두드러지게 나타나는데, 약 1 kOe에서 포화상태에 이르 며 Sample 1c와 Sample 2c의 포화 자화도는 실온에서 각각 250과 200 emu/cm³로 측정되었다. 이는 문헌에 알려져 있는 포화 자화도 값의 50~60 %에 불과한 것으로, 앞에서 언급한 Fe₃O₄의 낮은 결정성에 의한 것으로 판단된다.

서론에서 언급한대로 산화철 군은 마그네타이트, 헤마타이 트(Hematite, α-Fe₂O₃), 마그헤마이트(Maghemite, γ-Fe₂O₃) 등 다양한 화합물을 내포하므로, 실온에서 측정된 M-H 곡선 과 XRD를 이용하여 얻은 결과만으로 마그네타이트를 판별 하는 것은 세심한 주의가 필요하다. 저항의 온도 의존성을 측 정하여 Verwey 상전이 존재 여부를 확인 함으로서, 마그네타 이트를 다른 유사 산화철 화합물들과 구별하는 결정적 판단 근거로 활용할 수 있다. Fig. 4는 Sample 1c와 Sample 2c의 R-T 특성곡선을 보여준다. Sample 1c와 달리 2c는 150 K~ 300 K 영역에서는 금속적 거동을 보이나 150 K 이하의 온도 영역에서는 온도가 감소함에 따라 서서히 그 저항이 증가하 기 시작하다가 120 K 부근에 이르러 급격히 저항이 증가하는 Verwey 상전이를 보여준다. Sample 2c의 상전이 거동은 마 그네타이트 나노입자의 거동과 매우 유사하다[11]. Fig. 4에 삽입된 그림은 Sample 2c의 R-T 특성곡선의 변곡점이 나타 나는 영역을 확대한 것으로, 약 82 K 근처에서 급격히 증가 하는 양상을 명확히 확인할 수 있다. 이러한 금속-절연체 상 전이(Metal-Insulator Transition) 현상은 Ta이 삽입되지 않은, 그러나 보다 우세한 MgO(100) 성장이 확인된 Sample 1c에 서는 나타나지 않았으므로, Sample 2c에서 관찰된 Fe3O4 특 성이 후열처리 과정에서 발생된 β-Ta[12, 13] 또는 bct-Ta[14]의 형성이 인접한 MgO와 Fe₃O₄의 구조에 영향을 미 친 것으로 이해할 수 있다.

IV. 결 론

Si(100)\200 nm SiO₂\5 nm Ta\5 nm MgO\35 nm Fe₃O₄ 다층박막의 후열처리에 따른 구조적, 자기적 특성 변화를 관 찰하였다. 후열처리 과정에 의한 다층박막의 적층계면 효과를 기반으로 Ta 기저층이 Fe₃O₄ 박막에 미치는 영향을 보다 우 세한 결정성을 띄는 MgO(100) 위에 적층된 Fe₃O₄ 박막의 특성과 비교하여, 500 ℃ 진공 후열처리에 의해 Fe₃O₄ 박막 이 형성되었음을 확인하였다. 이 연구 결과는 이상적인 마그 네타이트 Fe₃O₄ 박막의 자기적 특성과는 다소 차이가 있으나 나노스케일의 다층박막구조에서 발현되는 적층계면 특성을 활 용하여, 즉 Ta 박막의 결정화 과정에 의해 유도된 Fe₃O₄ 박 막 형성을 새로이 제안하였다는 점에서 시사하는 바가 크다. 스핀트로닉스 소자로 활용되기 위해 Fe₃O₄ 박막 특성의 최적 화에 대한 후속 연구가 진행 중이다.

감사의 글

이 연구는 한국연구재단의 기초연구지원사업의 일반연구자 지원사업(NRF-2010-006749)과 중견연구자지원사업(NRF-2012-0005237)의 지원에 의해 진행되었다.

References

[1] J. M. D. Coey, A. E. Berkowitz, L. Balcells, F. F. Putris, and

F. T. Parker, Appl. Phys. Lett. 72, 734 (1998).

- [2] L. R. Bickford, J. M. Brownlow, and R. F. Penoyer, Proc. IEEE 104, 238 (1957).
- [3] C. Medrano, M. Schlenker, J. Baruchel, J. Espeso, and Y. Miyamoto, Phys. Rev. B 59, 1185 (1999).
- [4] M. Iizumi, T. F. Koetzle, G. Shirane, S. Chikazumi, M. Matsui, and S. Todo, Acta Crystallogr. Sect. B-Struct. Sci. 38, 2121 (1982).
- [5] H. Seo, M. Ogata, and H. Fukuyama, Phys. Rev. B 65, 085107 (2002).
- [6] P. Poddar, T. Fried, and G. Markovich, Phys. Rev. B 65, 172405 (2002).
- [7] S. Ahn and G. S. D. Beach, J. Appl. Phys. 113, 17C112 (2013).
- [8] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nat. Mater. 9, 721 (2010).
- [9] Y. J. Bae, N. J. Lee, T. H. Kim, H. Cho, C. Lee, L. Fleet, and A. Hirohata, Nanoscale Res. Lett. 7, 650 (2012).
- [10] N. J. Lee, Y. J. Bae, T. H. Kim, E. Ito, and M. Hara, J. Korean Phys. Soc. 65, L1995 (2014).
- [11] T. H. Kim, E. Y. Jang, N. J. Lee, D. J. Choi, K. Lee, J. Jang, J. Choi, S. H. Moon, and J. Cheon, Nano Lett. 9, 2229 (2009).
- [12] H. Xi, B. Bian, K. R. Mountfield, Z. Zhuang, D. E. Laughlin, and R. M. White, J. Magn. Magn. Mater. 260, 273 (2003).
- [13] L. A. Clevenger, A. Mutscheller, J. M. E. Harper, C. Cabral Jr., and K. Barmak, J. Appl. Phys. 72, 4918 (1992).
- [14] P. Catania, R. A. Roy, and J. J. Cuomo, J. Appl. Phys. 74, 1008 (1993).

– 46 –